3.2.79 \(\int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx\) [179]

Optimal. Leaf size=177 \[ \frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {13 d^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^6} \]

[Out]

1/5*d^4*(-e*x+d)^3/e^6/(-e^2*x^2+d^2)^(5/2)-23/15*d^3*(-e*x+d)^2/e^6/(-e^2*x^2+d^2)^(3/2)+13/2*d^2*arctan(e*x/
(-e^2*x^2+d^2)^(1/2))/e^6+127/15*d^2*(-e*x+d)/e^6/(-e^2*x^2+d^2)^(1/2)+3*d*(-e^2*x^2+d^2)^(1/2)/e^6-1/2*x*(-e^
2*x^2+d^2)^(1/2)/e^5

________________________________________________________________________________________

Rubi [A]
time = 0.27, antiderivative size = 177, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {866, 1649, 1829, 655, 223, 209} \begin {gather*} \frac {13 d^2 \text {ArcTan}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^6}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5/((d + e*x)^3*Sqrt[d^2 - e^2*x^2]),x]

[Out]

(d^4*(d - e*x)^3)/(5*e^6*(d^2 - e^2*x^2)^(5/2)) - (23*d^3*(d - e*x)^2)/(15*e^6*(d^2 - e^2*x^2)^(3/2)) + (127*d
^2*(d - e*x))/(15*e^6*Sqrt[d^2 - e^2*x^2]) + (3*d*Sqrt[d^2 - e^2*x^2])/e^6 - (x*Sqrt[d^2 - e^2*x^2])/(2*e^5) +
 (13*d^2*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(2*e^6)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1649

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, Simp[(-d)*f*(d + e*x)^m*((a + c*x^2)^(p + 1)/(2
*a*e*(p + 1))), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)
*Q + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p
 + 1/2, 0] && GtQ[m, 0]

Rule 1829

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], e = Coeff[Pq, x, Expon[Pq, x]]}, Si
mp[e*x^(q - 1)*((a + b*x^2)^(p + 1)/(b*(q + 2*p + 1))), x] + Dist[1/(b*(q + 2*p + 1)), Int[(a + b*x^2)^p*Expan
dToSum[b*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b*e*(q + 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, p}, x]
&& PolyQ[Pq, x] &&  !LeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx &=\int \frac {x^5 (d-e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx\\ &=\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {(d-e x)^2 \left (-\frac {3 d^5}{e^5}+\frac {5 d^4 x}{e^4}-\frac {5 d^3 x^2}{e^3}+\frac {5 d^2 x^3}{e^2}-\frac {5 d x^4}{e}\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d}\\ &=\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {(d-e x) \left (-\frac {37 d^5}{e^5}+\frac {45 d^4 x}{e^4}-\frac {30 d^3 x^2}{e^3}+\frac {15 d^2 x^3}{e^2}\right )}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^2}\\ &=\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {-\frac {90 d^5}{e^5}+\frac {45 d^4 x}{e^4}-\frac {15 d^3 x^2}{e^3}}{\sqrt {d^2-e^2 x^2}} \, dx}{15 d^3}\\ &=\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {\int \frac {\frac {195 d^5}{e^3}-\frac {90 d^4 x}{e^2}}{\sqrt {d^2-e^2 x^2}} \, dx}{30 d^3 e^2}\\ &=\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {\left (13 d^2\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx}{2 e^5}\\ &=\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {\left (13 d^2\right ) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^5}\\ &=\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {13 d^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^6}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.44, size = 118, normalized size = 0.67 \begin {gather*} \frac {\frac {e \sqrt {d^2-e^2 x^2} \left (304 d^4+717 d^3 e x+479 d^2 e^2 x^2+45 d e^3 x^3-15 e^4 x^4\right )}{(d+e x)^3}+195 d^2 \sqrt {-e^2} \log \left (-\sqrt {-e^2} x+\sqrt {d^2-e^2 x^2}\right )}{30 e^7} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5/((d + e*x)^3*Sqrt[d^2 - e^2*x^2]),x]

[Out]

((e*Sqrt[d^2 - e^2*x^2]*(304*d^4 + 717*d^3*e*x + 479*d^2*e^2*x^2 + 45*d*e^3*x^3 - 15*e^4*x^4))/(d + e*x)^3 + 1
95*d^2*Sqrt[-e^2]*Log[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e^2*x^2]])/(30*e^7)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(405\) vs. \(2(155)=310\).
time = 0.09, size = 406, normalized size = 2.29

method result size
risch \(\frac {\left (-e x +6 d \right ) \sqrt {-e^{2} x^{2}+d^{2}}}{2 e^{6}}+\frac {13 d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 e^{5} \sqrt {e^{2}}}+\frac {127 d^{2} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{15 e^{7} \left (x +\frac {d}{e}\right )}-\frac {23 d^{3} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{15 e^{8} \left (x +\frac {d}{e}\right )^{2}}+\frac {d^{4} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 e^{9} \left (x +\frac {d}{e}\right )^{3}}\) \(199\)
default \(\frac {-\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 e^{2} \sqrt {e^{2}}}}{e^{3}}+\frac {3 d \sqrt {-e^{2} x^{2}+d^{2}}}{e^{6}}+\frac {6 d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{5} \sqrt {e^{2}}}+\frac {10 d^{2} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{e^{7} \left (x +\frac {d}{e}\right )}-\frac {d^{5} \left (-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 d e \left (x +\frac {d}{e}\right )^{3}}+\frac {2 e \left (-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d e \left (x +\frac {d}{e}\right )^{2}}-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d^{2} \left (x +\frac {d}{e}\right )}\right )}{5 d}\right )}{e^{8}}+\frac {5 d^{4} \left (-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d e \left (x +\frac {d}{e}\right )^{2}}-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d^{2} \left (x +\frac {d}{e}\right )}\right )}{e^{7}}\) \(406\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/e^3*(-1/2*x/e^2*(-e^2*x^2+d^2)^(1/2)+1/2*d^2/e^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2)))+3*d
*(-e^2*x^2+d^2)^(1/2)/e^6+6*d^2/e^5/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))+10*d^2/e^7/(x+d/e)*
(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)-d^5/e^8*(-1/5/d/e/(x+d/e)^3*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)+2/5*e/d*
(-1/3/d/e/(x+d/e)^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)-1/3/d^2/(x+d/e)*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2))
)+5/e^7*d^4*(-1/3/d/e/(x+d/e)^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)-1/3/d^2/(x+d/e)*(-(x+d/e)^2*e^2+2*d*e*(x+
d/e))^(1/2))

________________________________________________________________________________________

Maxima [A]
time = 0.48, size = 169, normalized size = 0.95 \begin {gather*} \frac {13}{2} \, d^{2} \arcsin \left (\frac {x e}{d}\right ) e^{\left (-6\right )} + \frac {\sqrt {-x^{2} e^{2} + d^{2}} d^{4}}{5 \, {\left (x^{3} e^{9} + 3 \, d x^{2} e^{8} + 3 \, d^{2} x e^{7} + d^{3} e^{6}\right )}} - \frac {23 \, \sqrt {-x^{2} e^{2} + d^{2}} d^{3}}{15 \, {\left (x^{2} e^{8} + 2 \, d x e^{7} + d^{2} e^{6}\right )}} - \frac {1}{2} \, \sqrt {-x^{2} e^{2} + d^{2}} x e^{\left (-5\right )} + 3 \, \sqrt {-x^{2} e^{2} + d^{2}} d e^{\left (-6\right )} + \frac {127 \, \sqrt {-x^{2} e^{2} + d^{2}} d^{2}}{15 \, {\left (x e^{7} + d e^{6}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="maxima")

[Out]

13/2*d^2*arcsin(x*e/d)*e^(-6) + 1/5*sqrt(-x^2*e^2 + d^2)*d^4/(x^3*e^9 + 3*d*x^2*e^8 + 3*d^2*x*e^7 + d^3*e^6) -
 23/15*sqrt(-x^2*e^2 + d^2)*d^3/(x^2*e^8 + 2*d*x*e^7 + d^2*e^6) - 1/2*sqrt(-x^2*e^2 + d^2)*x*e^(-5) + 3*sqrt(-
x^2*e^2 + d^2)*d*e^(-6) + 127/15*sqrt(-x^2*e^2 + d^2)*d^2/(x*e^7 + d*e^6)

________________________________________________________________________________________

Fricas [A]
time = 2.51, size = 179, normalized size = 1.01 \begin {gather*} \frac {304 \, d^{2} x^{3} e^{3} + 912 \, d^{3} x^{2} e^{2} + 912 \, d^{4} x e + 304 \, d^{5} - 390 \, {\left (d^{2} x^{3} e^{3} + 3 \, d^{3} x^{2} e^{2} + 3 \, d^{4} x e + d^{5}\right )} \arctan \left (-\frac {{\left (d - \sqrt {-x^{2} e^{2} + d^{2}}\right )} e^{\left (-1\right )}}{x}\right ) - {\left (15 \, x^{4} e^{4} - 45 \, d x^{3} e^{3} - 479 \, d^{2} x^{2} e^{2} - 717 \, d^{3} x e - 304 \, d^{4}\right )} \sqrt {-x^{2} e^{2} + d^{2}}}{30 \, {\left (x^{3} e^{9} + 3 \, d x^{2} e^{8} + 3 \, d^{2} x e^{7} + d^{3} e^{6}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="fricas")

[Out]

1/30*(304*d^2*x^3*e^3 + 912*d^3*x^2*e^2 + 912*d^4*x*e + 304*d^5 - 390*(d^2*x^3*e^3 + 3*d^3*x^2*e^2 + 3*d^4*x*e
 + d^5)*arctan(-(d - sqrt(-x^2*e^2 + d^2))*e^(-1)/x) - (15*x^4*e^4 - 45*d*x^3*e^3 - 479*d^2*x^2*e^2 - 717*d^3*
x*e - 304*d^4)*sqrt(-x^2*e^2 + d^2))/(x^3*e^9 + 3*d*x^2*e^8 + 3*d^2*x*e^7 + d^3*e^6)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{5}}{\sqrt {- \left (- d + e x\right ) \left (d + e x\right )} \left (d + e x\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(e*x+d)**3/(-e**2*x**2+d**2)**(1/2),x)

[Out]

Integral(x**5/(sqrt(-(-d + e*x)*(d + e*x))*(d + e*x)**3), x)

________________________________________________________________________________________

Giac [A]
time = 3.13, size = 214, normalized size = 1.21 \begin {gather*} \frac {13}{2} \, d^{2} \arcsin \left (\frac {x e}{d}\right ) e^{\left (-6\right )} \mathrm {sgn}\left (d\right ) - \frac {1}{2} \, \sqrt {-x^{2} e^{2} + d^{2}} {\left (x e^{\left (-5\right )} - 6 \, d e^{\left (-6\right )}\right )} - \frac {2 \, {\left (\frac {445 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} d^{2} e^{\left (-2\right )}}{x} + \frac {665 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{2} d^{2} e^{\left (-4\right )}}{x^{2}} + \frac {405 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{3} d^{2} e^{\left (-6\right )}}{x^{3}} + \frac {90 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{4} d^{2} e^{\left (-8\right )}}{x^{4}} + 107 \, d^{2}\right )} e^{\left (-6\right )}}{15 \, {\left (\frac {{\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} e^{\left (-2\right )}}{x} + 1\right )}^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="giac")

[Out]

13/2*d^2*arcsin(x*e/d)*e^(-6)*sgn(d) - 1/2*sqrt(-x^2*e^2 + d^2)*(x*e^(-5) - 6*d*e^(-6)) - 2/15*(445*(d*e + sqr
t(-x^2*e^2 + d^2)*e)*d^2*e^(-2)/x + 665*(d*e + sqrt(-x^2*e^2 + d^2)*e)^2*d^2*e^(-4)/x^2 + 405*(d*e + sqrt(-x^2
*e^2 + d^2)*e)^3*d^2*e^(-6)/x^3 + 90*(d*e + sqrt(-x^2*e^2 + d^2)*e)^4*d^2*e^(-8)/x^4 + 107*d^2)*e^(-6)/((d*e +
 sqrt(-x^2*e^2 + d^2)*e)*e^(-2)/x + 1)^5

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^5}{\sqrt {d^2-e^2\,x^2}\,{\left (d+e\,x\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/((d^2 - e^2*x^2)^(1/2)*(d + e*x)^3),x)

[Out]

int(x^5/((d^2 - e^2*x^2)^(1/2)*(d + e*x)^3), x)

________________________________________________________________________________________